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Coproducts of D-Posets and Their Application
to Probability1

Roman Frič2,3

D-posets introduced by F. Chovanec and F. Kôpka ten years ago provide a suitable
algebraic structure to model events in probability theory. Generalizing analogous results
for fields of sets and bold algebras, we describe a duality between certain coproducts
of D-posets and generalized measurable spaces. An important role in the duality is
played by sequential convergence. We mention some applications to the foundations of
probability.
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1. INTRODUCTION

As shown in Novák (1958, 1962, 1965, 1968), topological methods and se-
quential structures are natural and useful tools for studying fundamental notions
of the probability theory. Indeed (cf. Frič (1997, 2000b, 2002a)), the σ -additivity
of a finitely additive probability measure is equivalent to the sequential continu-
ity with respect to a natural sequential convergence of events, the extension of
probability measures from a field of sets to the generated σ -field, or from a bold
algebra (of fuzzy sets) to the generated tribe, is from the topological and categorical
viewpoint of the same nature as the Čech-Stone compactification and the Hewitt
realcompactification, and the relationship between observables and random vari-
ables can be described as a categorical duality (i.e. a natural equivalence of certain
categories).

In the present paper we generalize some earlier results concerning fields of
sets and bold algebras (cf. Frič (1999, 2000a, 2000b)) to coproducts in the cat-
egory of D-posets. The motivation comes from probability, in particular, from
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3 Slovak Republic and Catholic University in Ružomberok, Nam. A. Hlinku 1, 034 01 Ružomberok,
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modelling events of a quantum nature (some events are not compatible). In each
section we recall some fundamental notions and give appropriate references. Fur-
ther information can be found, e.g., in Frič (1997, 2000a), Riečan and Neubrunn
(1997), Herrlich and Strecker (1976), Porst and Tholen (1991), Dvurečenskij and
Pulmannová (2000), and in the references cited therein.

Recall that if X is a set, then by a sequential convergence on X we understand
a set of pairs (〈xn〉, x) ∈ X N × X , specifying which sequence converges to which
limit, and we assume the usual axioms of convergence: each sequence converges to
at most one limit, each constant sequence converges to its value, each subsequence
of a convergent sequence converges to the same limit, and if 〈xn〉 is a sequence
and x is a point such that for each subsequence 〈x ′

n〉 of 〈xn〉 there is a subsequence
〈x ′′

n 〉 of 〈x ′
n〉 which converges to x , then 〈xn〉 converges to x . A map is sequentially

continuous if it preserves the convergence of sequences.

2. COPRODUCTS

In this section we recall some basic notions and extend some results con-
cerning coproducts of fields of sets in the category of D-posets, contained in Frič
(2000a), to bold algebras.

Recall (cf. Chovanec and Kôpka (2000); Kôpka and Chovanec (1994)), that
a D-poset is a quintuple (X, ≤, 
, 0, 1), where X is a set, ≤ is a partial order, 0
is the least element, 1 is the greatest element, 
 is a partial operation on X such
that, a 
 b is defined iff b ≤ a, and the following axioms are assumed:

(D1) a 
 b = a for each a ∈ X ;
(D2) If c ≤ b ≤ a, then a 
 b ≤ a 
 c and (a 
 c) 
 (a 
 b) = b 
 c.

If no confusion can arise, then the quintuple (X, ≤, 
, 0, 1) is condensed to X .
A map h of a D-poset X into a D-poset Y which preserves the D-poset

structure is said to be a D-homomorphism. LetD be the resulting concrete category.
It is known that D-posets are equivalent to the so-called effect algebras intro-

duced by Foulis and Bennett (1994). Interesting results about effect algebras and
D-posets can be found in Dvurečenskij and Pulmannová (2000) and in a series of
papers by Z. Riečanová, e.g. Riečanová (2000).

Each MV-algebra (cf. Cignoli, D’ottaviano, and Mundici (2000)), in partic-
ular each bold algebra, is a D-poset. For the reader’s convenience we repeat the
definition of a bold algebra and some related notions. They will play an important
role in our duality and its applications. Further information is contained e.g. in
Riečan and Neubrunn (1997). Information concerning sequential convergence on
MV-algebras can be found in Jakubı́k (1995) and Frič (1997).

Let I be the unit interval [0, 1] carrying the L� ukasiewicz operations x ⊕ y =
min{1, x + y}, xc = 1 − x , x � y = max{0, x + y − 1}, the usual order and the
usual convergence of sequences. Let X be a set and let I X be the set of all functions
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on X ranging in I carrying the pointwise L� ukasiewicz operations, order, and
convergence. A bold algebra is a subsetX of I X closed with respect to the inherited
Lukasiewicz operations, order, and convergence. An MV-algebra homomorphism
of a bold algebra X ⊆ I X into a bold algebra Y ⊆ I Y is a map of X and Y
preserving the Lukasiewicz operations. If X ⊆ I X is a bold algebra, then each
x ∈ X represents a sequentially continuous MV-algebra homomorphism evx of
X into I defined by evx ( f ) = f (x), f ∈ X . If each sequentially continuous MV-
algebra homomorphism of X ⊆ I X into I is represented by a unique point x ∈ X ,
then X is said to be sober. If X is closed with respect to the pointwise limits
of sequences in X , then X is said to be a (L� ukasiewicz) tribe. Clearly, if X
ranges in {0, 1}X ⊆ I X , then the bold algebra X becomes a field of subsets of
X (hence a boolean algebra). Each bold algebra is, in fact, a D-poset: f 
 g is
defined whenever g(x) ≤ f (x) for each x ∈ X and then f 
 g = f − g. Similarly,
each MV-algebra homomorphism (hence each boolean homomorphism) is a D-
homomorphism.

Let {(Xt , � t , 
t , 0t , 1t ); t ∈ T } be a family of D-posets. Recall that a D-
poset (X, � X , 
X , 0X , 1X ) together with D-homomorphisms {κt : Xt → X ; t ∈
T }, called coporjections, is the coproduct of {(Xt , � t , 
t , 0t , 1t ); t ∈ T } if when-
ever (U, � U , 
U , 0U , 1U ) is a D-poset and {ϕt : Xt → U ; t ∈ T } are
D-homomorphisms, then there is a unique D-morphism ϕ : X → U such that
ϕ ◦ kt = ϕt for each t ∈ T . The coproduct exists and it is uniquely determined (up
to an isomorphism). Having in mind applications to probability, for bold algebras
considered as D-posets we describe the coproduct more explicitly.

Construction 2.1. Let {Xt ⊆ I Xt ; t ∈ T } be a family of bold algebras. For each
t ∈ T , put X (t) = Xt × {t} and let X (t) = { f ∈ I X (t); f (x , t) = g(x) for some
g ∈ Xt }; then Xt and X (t) are isomorphic bold algebras and the sets X (t) and
X (s) are disjoint for t �= s. Let X = ⋃

t∈T X (t). For each t ∈ T , define A(t) ⊆ I X

as follows: f ∈ A(t) whenever there exits g ∈ Xt , g �= 0Xt , g �= 1Xt , such that
f (x , t) = g(x) for all (x , t) ∈ X (t) and f (x , t) = 0 for s ∈ T , s �= t . Let X =
{0X , 1X } ∪ (

⋃
t∈T A(t)). Then X ⊆ I X carries a natural partial order ≤X . Define

a partial operation 
X as follows:

(i) Put 1X 
X 1X = 0X , 1X 
X 0X = 1X , and 0X 
X 0X ;
(ii) For each f ∈ A(t), t ∈ T , put (1X 
X f )(x , t) = 1 − f (x , t) for all

(x , t) ∈ X (t) and put (1X 
X f )(x , s) = 0 for s ∈ T , s �= t , and put
f 
X 0X = f ;

(iii) For f, g ∈ A(t), t ∈ T , g ≤X f, put f 
X g = f − g.

For each t ∈ T , define the coprojection κt : Xt −→ X as follows: κt (0Xt ) = 0X ,
κt (1Xt ) = 1X , and, for g ∈ Xt , g �= 0Xt , g �= 1Xt , put (κt (g))(x , t) = g(x) if x ∈
Xt and put (kt (g))(x , s) = 0 whenever s ∈ T , s �= t , and x ∈ ⋃

t∈T Xt . Then X ⊆
I X together with the coprojections {κt : Xt −→ X ; t ∈ T } is the coproduct in D.
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Definition 2.1. Let {Xt ⊆ I Xt ; t ∈ T } be a family of bold algebras and letX ⊆ I X

together with the coprojections {κt : Xt −→ Yt ; t ∈ T } be their coproduct in D.
Then X is said to be the �-sum of {Xt ⊆ I Xt ; t ∈ T }, in symbols X = �t∈TXt .

Theorem 2.2. Let {Xt ⊆ I Xt ; t ∈ T } and {Yt ⊆ I Yt ; t ∈ T } be families of bold
algebras and letX ⊆ I X andY ⊆ I Y together with the coprojections {κt : Xt −→
X ; t ∈ T } and {λt : Yt −→ Y; t ∈ T } be their coproducts in D.

(i) Let {ht : Xt −→ Yt ; t ∈ T } be a family of MV-algebra homomorphisms.
Then there exists a unique D-homomorphisms h : X −→ Y such that
h ◦ κt = λt ◦ ht for each t ∈ T .

(ii) Let {pt : Xt −→ I ; t ∈ T } be a family of finitely additive probability
measures. Then there exists a unique D-homomorphism, p : X −→ I
such that p ◦ κt = pt for each t ∈ T .

Proof: Both assertions follow from the construction of coproduct. We leave out
details. �

Definition 2.3. Under the assumptions of Theorem 2.1,

(i) h : X −→ Y is said to be the �-sum of {ht : Xt −→ Yt ; t ∈ T }, in sym-
bols h = �t∈T ht ;

(ii) p : X −→ I is said to be the �-sum of {pt : Xt −→ I ; t ∈ T }, in sym-
bols p = �t∈T pt .

Our next step is to equip each �-sum of bold algebras with a suitable sequen-
tial convergence (initial with respect to the coprojections).

Construction 2.2. Let {Xt ⊆ I Xt ; t ∈ T } be a family of bold algebras and let
X ⊆ I X together with the coprojections {κt : Xt −→ X ; t ∈ T } be their coproduct
inD, i.e. their �-sum. Define a sequential convergence onX as follows: a sequence
〈 fn〉 converges to f iff, for some t ∈ T , there is a sequence 〈gn〉 converging in Xt

to g ∈ Xt such that κt (gn) = fn and κt (g) = f . Since X (t) and X (s) are disjoint
whenever t �= s and each κt is one-to-one, the resulting convergence satisfies all
usual axioms of convergence and it is the finest sequential convergence on X
making all coprojections κt sequentially continuous. In fact, each image κt (X ) is
a bold algebra isomorphic to X (t).

Corollary 2.4. Under the assumptions of Theorem 2.2,

(i) if each ht , t ∈ T , is sequentially continuous, then h : X −→ Y is se-
quentially continuous;
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(ii) if each pt is sequentially continuous, then p : X −→ I is sequentially
continuous.

Proof: A straightforward proof is left out. �

Let T be a set. Let DBT be the category whose objects are �-sums of fam-
ilies {Xt ⊆ I Xt ; t ∈ T } of bold algebras and whose morphisms are sequentially
continuous �-sums h : X −→ Y of families {ht : Xt −→ Yt ; t ∈ T } of sequen-
tially continuous MV -algebra homomorphisms, where X and Y are the �-sums
of families of bold algebras {Xt ⊆ I Xt ; t ∈ T } and {Yt ⊆ I Yt ; t ∈ T }, respectively.
Let SDBT be the subcategory of sober objects.

3. DUALITY

In the classical Kolmogorovian probability theory, each random variable, as a
measurable function on the original probability space (�, S, p) ranging in the real
line R, induces a boolean homomorphism of the measurable subsets B of R into S.
This is one side of the Stone-type duality between certain boolean homomorphisms,
called observables and random variables. The other side is based on some special
properties of B. Unlike the Stone duality (based on compactness which implies
that each finitely additive probability measure is countably additive—certainly an
undesirable assumption), the duality described in Frič (1997, 2000, 2002b) (based
on sequential convergence) provides a more flexible tool for the study of dualities
between generalized observables and generalized random variables.

In this section we describe a duality for certain coproducts of bold algebras
in D.

Let X be a set and let S be a field of subsets of X . Then (X, S) is said to be a
measurable space. If (X, S) and (Y, T) are measurable spaces, then a map f of Y
into X is said to be measurable, more exactly (S, T)-measurable, if the preimage
f ←(S) = {y ∈ Y ; f (y) ∈ S} belongs to T whenever S belongs to S. This classical
definition is equivalent to the following one (more natural from the point of view
of category theory): for each characteristic function χs : X −→ {0, 1}, S ∈ S, the
composition χs ◦ f : Y −→ {0, 1} is a characteristic function of some T ∈ T (cf.
Frič, 2002b, 2000b). The interested reader is referred to Frič (in pressb) for more
categorical approach to measurable maps.

Accordingly, if X ⊆ I X is a bold algebra, then (X, X ) is said to be a measur-
able space and if (X, X ), (Y, Y) are measurable spaces and f is a map of Y into
X such that for each g ∈ X the composition g ◦ f belongs to Y , then f is said to
be (X , Y)-measurable.

Definition 3.1. Let T be a set. Let {Xt ⊆ I Xt ; t ∈ T } be a family of bold algebras
and let X ⊆ I X be their �-sum. Then the pair (X, X ) is said to be a measurable
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space. If X is sober, then (X, X ) is said to be sober. Let {Yt ⊆ I Yt ; t ∈ T } be
another family of bold algebras and let Y ⊆ I Y be their �-sums. Let { ft : Yt −→
Xt ; t ∈ T } be a family of (Xt , Yt )-measurable maps. Define a map f : Y −→ X as
follows: for (y, t) ∈ Y (t) = Yt × {t}, t ∈ T , put f (y, t) = ( ft (y), t) ∈ Xt . Then f
is said to be the �-sum of { ft : Yt −→ Xt ; t ∈ T }, in symbols f = �t∈T ft ; each
�-sum is said to be (X , Y)-measurable.

Let X = �t∈TXt , Y = �t∈TYt , and let f be an (X , Y)-measurable map.
Recall (cf. Construction 2.1), that X ⊆ I X and Y ⊆ I Y are special maps of the
disjoint unions X = ⋃

t∈T Xt × {t}, Y = ⋃
t∈T Yt × {t} into I . Then for each g ∈

X , the composition g ◦ f belongs toY . This induces a map f � ofX intoY . Indeed,
0X and 1X are constant maps on X . Hence f �(0X ) = 0Y and f �(1X ) = 1Y . If
g ∈ X , g �= 0X , g �= 1X , then there exists t ∈ T and h ∈ X , h �= 0X , h �= 1X such
that g(x , t) = h(x) for all x ∈ Xt and g(x , r ) = 0 for r ∈ T , r �= t . Since each ft ,
t ∈ T , is (Xt , Yt )-measurable, necessarily g ◦ f ∈ Y .

Lemma 3.2. Let f be an (X , Y)-measurable map. Then the induced map f � is
a sequentially continuous D-homomorphism.

Proof: Since each ft : Yt −→ Xt , t ∈ T , induces an MV -homomorphism of Xt

intoYt which is sequentially continuous with respect to the pointwise convergence
(cf. Lemma 3.1 in Frič (2002b)), straightforward calculations show that f � is a
sequentially continuous D-homomorphism of X into Y . �

Theorem 3.3. Let {Xt ⊆ I Xt ; t ∈ T } and {Yt ⊆ I Yt ; t ∈ T } be families of bold
algebras and letX ⊆ I X andY ⊆ I Y together with the coprojections {κt : Xt −→
X ; t ∈ T } and {λt : Yt −→ Y; t ∈ T } be their �-sums. Let {ht : Xt −→ Yt ; t ∈
T } be a family of MV -algebra homomorphisms and let h : X −→ Y be their �-
sum. If each Xt , t ∈ T , is sober, then there is a unique family of maps { ft : Yt −→
Xt ; t ∈ T } such that each ft is (Xt , Yt )-measurable and their �-sum f : Y −→ X
induces h, in symbols h = f �.

Proof: Since each Xt , t ∈ T , t ∈ T , is sober, it follows from Theorem 2.3 in Frič
[2002b] that there exists a unique (Xt , Yt )-measurable map ft : Yt −→ Xt such
that ht = f �

t . It follows from the costruction of �-sums that h = f �. �

Let T be a set. Let DMT be the category whose objects are measurable
spaces (X, X ), where X ⊆ I X is a �-sum of a family {Xt ⊆ I Xt ; t ∈ T } of bold
algebras and whose morphisms are �-sums f = �t∈T ft , where {Xt ⊆ I Xt ; t ∈ T }
and {Yt ⊆ I Yt ; t ∈ T } are families of bold algebras, (X, X ) and (Y, Y) are measur-
able spaces,X = �t∈tXt , Y = �t∈tYt , and { ft : Yt −→ Xt ; t ∈ T } are families of
(Xt , Yt )-measurable maps, t ∈ T . Let SDMT be the subcategory of sober objects.
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Theorem 3.4. The categories SDBT and SDMT are dually isomorphic.

Proof: Passing from a sober measurable space (X, X ) as an object of SDMT to
X as a �-sum and back, we get a one-to-one correspondence and, in fact a pair
of contravariant functors between the two categories. It is easy to see (cf. Lemma
3.2 and Theorem 3.3) that they constitute the desired dual isomorphism. �

Theorem 3.5. The categories SDBT and DBT are naturally equivalent.

Proof: The assertion follows from the Construction of �-sum and the fact that
the categories B D of bold algebras and SO B D of sober bold algebras are naturally
equivalent (cf. Frič (2002b)). �

Corollary 3.6. The categories DBT and SDMT are dual.

Observe that while each semisimple MV -algebra is isomorphic to a bold
algebra, for each MV -algebra M there is an ultrafilter u such that M can be
represented via functions into the ultrapower Iu of I (cf. Di Nola (1991)). Using the
duality between such “nonstandard” bold algebras and “nonstandard” measurable
spaces based on approximation (instead of convergence) described in Frič (2000b),
a duality for the corresponding �-sums can be constructed.

4. APPLICATIONS

In this section we hint the motivation and some application of the coproducts
in the category of D-posets to the foundations of probability.

Recent results concerning probability on MV -algebras can be found in
Mundici and Riečan (2002) and Frič (2000b).

Let (�, S, p) be a probability space and let f be a random variable, i.e., a
(B, S)-measurable map of � into the real line R, where B is the set of all measurable
subsets of R. Then f � is a sequentially continuous boolean homomorphism of B

into S and p ◦ f � is a probability measure on B (called the distribution induced
by f ). The classical case can be generalized as follows: we replace S and B with
suitable bold algebras X and B and, as shown in Frič (2002a, 2000b), then we can
generalize f , f �, p so that f becomes a (B, X )-measurable map, f � becomes a
sequentially continuous MV -algebra homomorphism, and p and p ◦ f � become
generalized probability measures. This mdel has a fuzzy nature.

As proposed in Frič (2000a), it is possible to generalize the classical model
via coproducts in the category of D-posets so that the events have a “sharp” (or
boolean) character and some events are not compatible. The motivation comes from
“partial” experiments. Given (�, S, p), we choose a family {(�t , St , pt ); t ∈ T },
where each �t belongs to S, p(�t ) �= 0, each St is, e.g., the trace of S to �t (all
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sets of the form �t ∩ S, S ∈ S), and each pt is, e.g., the conditional probability
p(A) = p(A ∩ �t )/p(�t , A ∈ St ), given by �t . Further, given a random variable
f , we can consider a family { ft = f ↑ �t ; t ∈ T } of “partial” random variables.
Since the partial “sure” events �t need not be mutually disjoint, the same event
can be considered in different partial original probability spaces (�t , St , pt ) and
events in different St become incompatible. Hence the model has a quantum nature.
Formally, we work with the family {(�t , St , pt ); t ∈ T } as with a �-sum.

The results of the previous sections allow us to generalize the Kolmogoro-
vian model one step further: we start with a suitable family {(Xt , Xt , pt ); t ∈ T }
of “fuzzy” probability spaces (e.g. induced by “partial” experiments on a single
“fuzzy” probability space (X, X , p)) and formally work with the �-sum of the
family.
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Frič, R. (2002a). L� ukasiewicz tribes are absolutely sequentially closed bold algebras. Czechoslovak

Mathematical Journal 52, 861–874.
Frič, R. (2002b). Convergence and duality. Applied Categorical Structures 10, 257–266.
Herrlich, H. and Strecker, G. E. (1976). Category Theory, 2nd edn., Heldermann Verlag, Berlin.
Jakubı́k, J. (1995). Sequential convergence in MV-algebras. Czechoslovak, Mathematical Journal 45,

709–726.
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